Spectral element formulations on non-conforming grids: A comparative study of pointwise matching and integral projection methods
نویسندگان
چکیده
Pointwise matching (PM) and integral projection (IP) methods are two widely used techniques to extend the classical weak formulations to include non-conforming grids. We present spectral element formulations on polynomial (p-type) and geometric (h-type) non-conforming grids using both the PM (also known as the Constrained Approximation) and IP (also known as the Mortar Element) methods. We systematically compare the convergence characteristics of PM and IP methods for diffusion, convection, and convection–diffusion equations. Consistency errors due to the non-conforming formulations of the diffusion equation result in convergence problems for the PM method using the maximum rule. Both non-conforming formulations for the unsteady convection operator result in eigenvalue spectrum with positive real values, causing convergence problems due to the consistency errors. However, small ‘‘physical’’ diffusion in the convection–diffusion equation eliminates these problems, resulting in spectral convergence for both methods. Encouraged by this, we present spectral element formulations for incompressible Navier–Stokes equations using PM and IP methods on p-type and h-type non-conforming grids, and demonstrate spectral convergence for unsteady and steady test cases. Results for two-dimensional lid-driven cavity flow at Re = 1000 are also presented. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملNon-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions
In the last decade, non-conforming domain decomposition methods such as the mortar finite element method have been shown to be reliable techniques for several engineering applications that often employ complex finite element design. With this technique, one can conveniently assemble local subcomponents into a global domain without matching the finite element nodes of each subcomponent at the co...
متن کاملFinite Element Methods on Non-conforming Grids by Penalizing the Matching Constraint
The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملA Non-mortar Mixed Finite Element Method for Elliptic Problems on Non-matching Multiblock Grids a Non-mortar Mixed Finite Element Method for Elliptic Problems on Non-matching Multiblock Grids 1
We consider the approximation of second order elliptic equations on domains that can be described as a union of sub-domains or blocks. We assume that a grid is deened on each block independently, so that the resulting grid over the entire domain need not be conforming (i.e., match) across the block boundaries. Several techniques have been developed to approximate elliptic equations on multibloc...
متن کامل